Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Assunto principal
Intervalo de ano de publicação
1.
Braz J Biol ; 84: e262697, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35976350

RESUMO

Garlic (Allium sativum) is an important cash food crop, and the biotechnology industry has considerable interest in the plant because of its medicinal importance. These medicinal properties are attributed to organosulphur compounds as the accumulation of these compounds varies according to genotype, locality, light quality, and cultivation practices. In this study, we compared a newly developed garlic variety NARC-G1 by National Agricultural Research Centre (NARC), Islamabad, Pakistan with three different garlic cultivars and highlighted the distinctive attributes like phenotypic characteristics, the content of allicin, elemental profile, and gene polymorphism. Phenotypic analysis showed NARC-G1 has significantly higher bulb weight (66.36g ± 18.58), single clove weight (5.87g ± 1.041), and clove width (17.41mm ± 0.95) which directly correlates to the size of the garlic. The analytical analysis showed the highest allicin content (4.82 ± 0.001) in NARC-G1. Genotyping of the alliinase in all four cultivars showed indels in the gene resulting in distinguishable changes in organosulphur compounds' profile. NARC-G1 is unique from other garlic cultivars and could be the best choice for mass production with proper cultivation and irrigation management. Moreover, for Pakistan NARC-G1 could be a potential contender to earn the industrial benefits with inland cultivation instead of importing garlic alleviating the economic burden.


Assuntos
Alho , Antioxidantes , Dissulfetos , Alho/química , Alho/genética , Humanos , Ácidos Sulfínicos/análise
2.
Braz. arch. biol. technol ; 60: e17160352, 2017. graf
Artigo em Inglês | LILACS | ID: biblio-839087

RESUMO

ABSTRACT The MYB family represents one of the most abundant classes of transcriptional regulators that perform pivotal role under different developmental processes and abiotic stresses. In present study, a MYB gene from Oryza sativa was selected for functional characterization. Bioinformatics analysis revealed that OsMYB1 cDNA encodes R2-R3 type DNA binding domain consisting of 413 amino acids having size of 44 kDa and pI of 6.24. DNA binding domain containing region was cloned and over-expressed in E. coli. Then, the survival of pGEX-OsMYB1 transformed E. coli cells was compared with control plasmid under different concentrations of NaCl, mannitol, high and low temperature. pGEX-OsMYB1 enhanced the survival of cells at high temperature and salinity. Electrophoretic mobility shift assays (EMSAs) have shown that recombinant OsMYB1 protein was able to bind with DIG labeled probe containing MYB binding site. RT-qPCR analysis revealed high MYB1 expression under wounding, salt, drought and heat stresses in rice. Expression was 23 fold higher in response to wounding demonstrating the worth of OsMYB1 up-regulation in wounding. Intrinsic disorder profile predicted that OsMYB1 exhibits 60% degree of intrinsic disorder proposing that these regions might be involved in DNA binding specificity and protein-protein interaction. The positive response of OsMYB1 suggests that its over-expression in crop plants may help in providing protection to plants to grow under abiotic stresses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...